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Introduction

Studies conducted at Amesl’? on mideourse
navigation for a circumlunar mission used linear
matrix operations for trajectory determination and
guidance. These operations require the knowledge of
"error coefficient” or "transition" matrices, which
are the matrices of first partial derivatives of the
variational parameters at one time on a given refer-
ence tragjectory with respect to those at an earlier
time. The variationsl parameters may be any set of
variables which completely defines deviations from
the reference position and velocity.

This paper is concerned with the problems
involved in the computation of the transition matri-
ces. The results presented are from a theoretical
study conducted in an attempt to produce a simpler,
though perhaps less accurate, method of computation
than that used previously. This slternate method
is based on the patched conic approach. Although
the results are inconclusive in many respects, it
appears that the method can be used to advantsge in
some cases.

The work can be divided into four parts as
follows: First, it is shown that computation of the
matrices in closed form using patched conic approx-
imations is inherently limited in accurascy, and that
this accuracy is considered inadequate for lunar
missions. Second, a numerical method is presented
for improving the accuracy to an acceptable level.
Third, either the matrices from the strictly two-
body computations or the improved ones can be used
for midcourse guidance at the expense of additional
corrective velocity. The magnitudes of the velocity
penalties for the improved and unimproved matrices
are compared. Fourth, a qualitative evaluation of
the computer time and storage requirements for the
approximate method is presented.

Theory

At this point, a brief outline of the method
used for computing the transition matrices in the
midecourse guidance studies mentioned earlier will
help to illustrate the object of the present study.
The computation was carried out using the compo-
nents of position and velocity as variational param-
eters; however, the same approach could conceivably
be used with other variastional parameters. The pro-
cedure is as follows: A set of linear differential
perturbation equations is obtained by expanding the
vehicle's equations of motion about the reference
trajectory. The coefficients in the equations are
prescribed functions of position on the reference
trajectory, hence, of time. The simultaneous inte-
gration of six sets of these equations with appro-
priate initial conditions will yield the desired
matrices. The accuracy of this calculation is lim-
ited only by the accuracies of the mathematical
model and of the numerical operations, but the inte-
gration is quite time consuming. In addition, if a
high precision numerical integration is used, a
large amount of computer storage mey be required.
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Use of Two-Body Approximstion

One approach to the problem of simplifying the
computation of the matrices is the use of two-body
approximations. That is if the trajectory is
assumed to be a conic over a given time interval,
then the state vectors* at the initial and final
times can be related to each other in closed form.
Hence, the transition metrix over this interval can
8lso be found in closed form. If the total trajec-
tory is divided into n of these intervals, then
the transition matrix relating perturbations from
the reference trajectory at the finasl time to those
at the initial time can be approximated by multiply-
ing the n individual two-body matrices together.

As n is increased, that is,as the size of
the intervals is reduced, the individual conics
become better approximations to the actual trajec-
tory. Therefore, if no accuracy 1s lost in the
numerical operations, the matrices are obtained with
increasingly greater accuracy.

There is, however, a limit to the accuracy
which can be obtained by the reduction of the time
intervals over which the reference trajectory is
approximated by individual conics. To illustrate
this point, consider the linear perturbation equa-
tions of motion

X =¥ (1)
where X 1is the vector of perturbations from the
reference trajectory and F is a matrix of coeffi=~
cients which are functions of position on the refer-
ence trajectory. It can be shown that the transi-
tion matrix, ¢, also satisfies equation (1); that is

. ]
b = Fo (2)
The matrix @ 1is defined as the transition
matrix which would be obtained if only a single
homogeneous spherical central body were present and
Fo as the value the matrix ¥ would have in such
a case. The matrices V¥ and F can then be
defined by the following equations:
=0+ V
=F, + F ()
= F, )
Equation (2) can now be written as
o+ V¥ =Fq+ Fpo + Fo¥ + Fp¥ ()
but
¢ = Foo (5)
s0

V= Fpo + Fob + Fpv (6)

*For the present, "state vector” will be
defined as any set of six variables from which the
vehicle's instantaneous position and veloclty can
be determined.



Now consider the case illustrated in the sketch
below. The reference trajectory is being approxi-
mated by conics over e series of short time inter-
vals for the purpose of computing the transition
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Here tg
is the time of injection.
matrix o¢(tp; tn-y) from t,., to t, is written,

is the terminal reference time
The transition

for convenience, as ¢, and similarly for ¢ and V.

From equation (6)

tn
Y =\jp (Fpon + Fo¥yp + Fp¥y)dt (¢0)]

n-1

and Vp 1is the error in approximating the transi-
tion matrix, &, across the nth interval with the
matrix @, computed from the two-body equations.

For use later in the paper, it is desired to
know the limit approached by V¥, as n becomes
very large, that is, as the time interval approaches
zero. The F matrices on any practical trajectory
will be non-null and finite if the proper variables
are chosen to describe the trajectory. Therefore,
since at time tn-1s Pn 1s the unit matrix and
V¥, 1is the null matrix, the last two terms in the
integrand become negligibly small with respect to
the first as the time interval is made very small.
Thus, according to the classic definition of the
integral

lim ¥, = Fp(ty)at
n p( n) ®
where At =t - th;-

The transition matrix, ¢, relating deviations
in the state vector at time +tg to those at 1,
can be written in the following form:

o = (o + V) (O, + ¥yy) - (@2 + ¥2) (o, + ¥;)

(9)

In order to find the relatlonship between ¢p and
its two-body approximation, it is necessary to
expand equation (9). Setting n equal to 4 is
sufficient to show the form of the expansion. In
this case

OF = PaPaPaPy + (@, + ¥, ) (@5 + ¥5) (@, + V) vy
+(o, + ¥ ) 9y + ¥ )¥,9, + (9, +¥ )V 0.9 + ¥, 0,09,
= PuPP 0 00,0V, + 2.0.¥,9,
+ ¢4‘&’-'3(;)2(P1+ WGanq)Zcpl

(10)

.

Equetion (10) can be generalized to n terms to
give

n
o(tE;to) = 9(tE;to) +Z o(tEste) ¥yo(ty_,5t0)
i=1 (11)
The second term on the right represents the error,
W(tE;to), in approximating the transition matrices
over the short intervals with two-body equations.

As n 1is allowed to become very large,
equation (11) becomes

n
o(tEsto) = 9(tEsto) + Lim Z o{tEst1) ¥;0(ty . ,to)
e
i=1
(12)
but from equation (8)
¥y = Fp(ti)At
so that
n
o(tE;to) = P(tEsto) + lim Z®(tE;ti)Fp(ti)Ath(ti_l;to)
n—w -
1=1
or

tg
o(tgste) = o(tEsto) + ft o(tgst)Fplt)o(tstg)at
o

(13)

Thus in the 1limit the error, WE, in approximating
the transition matrix approaches the integral on the
right hand side of equation (13). In order for this
integral to yield the null matrix for all values of
t, the integrand must be identically the nuil
matrix. Since the transition matrices are Jacobians
of the variational parameters at one time, with
respect to those at a previous time, they must be
nonsingular. Some of the terms of the matrix F

are the second partial derivatives of the perturging
potential function and, because of the form of that
function, must be nonzero. For these reasons, the
integrand in equstion (13) cannot be identically
zero and WE must, in general, have nonzero terms.
In other words, the integral in equation (13) repre-
sents a minimum error in approximating the transi-
tion matrices by closed-form computation.

It is of interest to know what effect the
reduction of the time intervals has on the matrices
from the closed-form computation. From equation (5)
the closed-form matrix over the nth interval
could be computed from

tn
q)n = f Fc(Pn

tn-1

where the terms of the matrix F. are calculated as
functions of the state vector on the approximating
conic between t,_; and tn. As the time interval is
made arbitrarily small, ¢, approaches its initial
value, the unit matrix, and F, approaches the
value which would be calculated using the state vec-

tor on the reference trajectory at time t,. From
the classic definition of the integral
lm @y = I + FeAAt (1)
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where P, 1is evaluated on the reference trajectory.
It P is written as the product to n matrices of
the form in equation (14), then it cen be expanded
to give

9g = I+Fe(ti)at +Fo(t2)o(ty;t0)at
+ Fo (ta)olta;to)at + ... Fol(tp)e(tn.3t0)0t

Hence,

t
lin gp =f E Fo(t)p(tst,)at (15)
-+ to

where Q)(to) =1 and Fo 1s evaluated on the refer-
ence trajectory. The integral in equation (15)
represents the ultimate accuracy available, except
in isolated fortuitous cases, from using closed-form
equations to approximate the matrices. Therefore,
this integral is useful as a standard of comparison
for the closed-form matrices computed using finite
time intervals.

Computation of Matrices in Closed Form

For convenience, the two-body matrices were
computed in closed form with the components of the
Cartesian position and velocity used both as the
variagtional parameters* and as the components of the
state vector. The procedure is one of lineariza-
tion, as in the case of the differential equations,
which uses a Taylor series expansion in which all
derivatives of higher than first order are neglected.

The equations relating position and velocity
at two points are written according to the method
of Laplace® and differentiated. The closed-form
equations are:

R = fﬁo + gVo

v = |, + &V,
where R, and Vo are_the initial ‘position and vel-
ocity vectors, R and V are their final values,
while f, g, :E’, and § are scalar functions of the

initial position and velocity and of the time inter-
val being used.

(16)

The first partial derivatives of the above
equation are:

a_ _ _

a—g_; = I + Ro(%e)T + Tolvge)”

3R = T = T

A 81 + Ro(Wt)™ + Vo(He) an
N s io(vﬁi‘)T + VO(VRé)T

Blio

NV _ a1+ Bo(wyD)T + Tolwye)T

A

*It is well to point out that Pines3,% has
shown that transition matrices computed over long
time arcs become ill-conditioned as a result of sec-
ular terms and that this difficulty can be reduced
greatly if variational parameters different from the
ones used here are chosen. No difficulty because of
this phenomenon has been encountered in the Ames
lunar studies, presumably because the time arcs
involved have never exceeded about half an orbital
period. Such {ll-conditioning need not affect the
comparison of results from an approximate method
and a more accurate model, but it should be consid-
ered if the method is to be incorporated into a
navigation system.

The vector partial derivatives in equation (17) are
of the form

EXE

dxo dyo OzZg
a§ _ QL « e 0 s .
®, | %%

oy )

__Bzo _

The notation VR and ¥y 1indicates the gradient
with the components of position and velocity,
respectively, used as independent variables, end I
is the 3x3 unit matrix. The vector partiasl deriva-
tives are submatrices of the two-body transition
matrix which can be written:

R R
F, oF,
P = (18)
N W
3R, o,

Improvement of Two-Body Matrices

It wlll be shown later that with finite time
intervals the error in the matrices was considered
unacceptable even though they compared favorably
with the results of equation (15). This inaccuracy
was the resson for performing the second part of the
work, that 1is, finding a means for improving the
approximation. The epproach to this problem was to
perform an approximate integration of equation (7);
that is, of

t
n
Yy = f (chpn + Folp + Fp¥p)dt
t

n-1

If Cartesian coordinates are used, the
matrices in equation (7) can be partitioned in
the followlng form:

Q I
R )
F, o
o] 0
Fp = 5
by 0
(19)
® R
% %2 E, o,
9 = = _ -
P53 P N
R |

In this notation the zeros are 3x3 null matrices,
and F, and F,, are 3x3 matrices of partial deriva-
tives of acceﬁerations due to the spherical central
body and of the perturbing accelerations, respec-
tively. The matrix ¥ 1is partitioned in a form
corresponding to that of o. '



Substituting equations (19) in equation (6)
gives

. . — =
i fo o) fe, 9] [o 1][w w
= +
Va Vo] (Fp o) |y 9, |Fe Of |¥a ¥,
- N -
- -
o 0 ¥ ‘l/;
+
Fp of Iy, v, (20)
— — -t
Expanding equation (20) results in
¥ = ¥g
‘l-’z =¥
L (21)
¥y = Fp?, + Fo¥, + Fp¥y
W4 = FP‘pz * 1?sze * FPvz
so that
V1 = Fp®, + Fo¥y + Fev,y
. = _ - (22)
V2 = FpP, + Fc‘*’z + Fp\va
If Wl and ‘Vz are neglected,
¥, *F®
. * (23)
Wz = FPq’z

It is assumed that the accelerations in
equation (23) are constant at their average value
over the nth interval., Since Py at the begin-
ning of the interval is the unit matrix and ¢, 1is
the null matrix

¥ (tpity-q) = Fpltn-1) + fp(tn)q)l(tn)_(‘c_n_:_’{;n_.l_)j

¥o(tnitn-1) = Fp(tn)qaa(tn)g&:zn_-ii

¥, (tnitn-1) = Fpltn-1) +Fp(tn)q>l(tn)ffi_;i“_'.1_) »

¥ (tnstn-a) = fp(tn)q’z(tn)w (21)

Equations (24) represent, in partitioned form,
the results of an spproximate integration of equa-
tion (7). The perturbation matrices thus computed
can be added to the two-body matrices for corre-
sponding intervals in order to improve the approxi-
mation.

Evaluation of Accuracy

The significance of the inherent insccuracy in
the closed-form matrices and the effectiveness of
the improvement have been judged on the basis of a
numerical example. Likewise, a comparison of the
velocity penalties discussed earlier, resulting from
use of the improved and unimproved matrices, was
carried out for the same numerical example. This
section of the paper describes the method of evalu-
ating the errors in prediction and guidance, the
error criteria used, and the method of computing
the velocity penalty.

Method of evaluation.- The anslysis of the
accuracy of the approximate method is carried out by
comparison of the approximate matrices with those of
a "correct” solution. The correct solution in this
study is assumed to be obtained by the integration
of the perturbstion differential equations from a
mathematical model considered sufficiently accurate
for computing the reference trajlectory. For deter-
mination of the errors in prediction, an error
metrix, E, is found by subtracting the approximate
matrix from the correct one. This error matrix is
partitioned in the form of equation (18).

3R 3R
E E D=
SR NE- S~
E = = (25)
vV ;v
Es Eg Aa\_’O AS-V—O-

The matrix on the extreme right indicates which of
the E; corresponds to the error in partial deriv-
atives of position with respect to initial position,
position with respect to initial velocity, etec. TFor
example, if an initial position deviation from the
reference were multiplied by E; the result would
be the vector error in predicting position deviation
from the reference at the final time. The E; will
be referred to in the remainder of the paper as the
prediction error matrices.

It is also desired to know the error arising
from using the approximate matrices for guidance.
For this purpose the fixed time of arrival guidance
law from previous Ames studies®s2 will be used. The
transition metrix ¢ from the time of a velocity
correction to the terminal point is partitioned in
the form described previously

Then the velocity vector, 5‘7(;, to be gained is

8V = -0510,8R - &V (26)
where &R and BV are the position and velocity
deviations from the reference trajectory at the time
of the correction. If ¢, ®R,and &V are known
exactly, the position deviation, ®Rg, at the end
point after the application of the velocity correc-
tion will be

BRE = 048R + 9,87 - 0, (2270,8R + V) =0 (27)
Using the approximate matrices, 9, and 9., in com-
puting the velocity correction gives

8Rg = (9; - 9959, )8R = BSK (28)

The matrix B will be referred to as the guidance
error matrix.

The results to be presented later show that as
the terminal point is spproached, the guidance errors
resulting from use of the approximate matrices
become negligibly small. Therefore, a guidance
error resulting from an earlier correction can be
eliminated at the expense of a subsequent correction
nearer the terminal point. It is assumed that this
second correction will be made at some time, %5,
when the residual error will be negligible. The



deviations from the reference at this time will be
given by
Bﬁg Sﬁg
= 0" (tgsta)
&Va 5VE
L -t [N

(29)

The terminal position deviation B8Ry 1s given by
equation (28). Similarly, the velocity deviation,
8Vg, can be shown to be

(30)

vhere &R and the matrix C are evaluated at the
time of the first correction.

8Vg = (05 - © 210, )8R = C8R

It 1s shown in reference 2 that if ¢ is
partitioned as before, then

o T
L (31)
<3 oy
Therefore, with &Rp and 8Vg substituted from
equations (28) and (30) and the subscript 1 added

to indicate the time of the first velocity correc-
tion,

3

Rz - B1&R,
R I _ (32)
&Vo -bg ) C18Ry
The second velocity correction is given by
8V, = 059,882 - 8V (33)

where it is understood that the ¢4 and ¢; 1in
equations (32) and (33) are evaluated at the time of
the second correction. Values of B8Ry and &V, for
substitution into equation (33) are obtained from
equation (32).

= T (T o= 1 T =
8Va, = (95 - 93%0,0,)B18Ry + (9700, - q;?)clanl
(34)

If it is assumed that the second correction is made
at a range where the differences between the correct
and approximate matrices are negligible, then equa-
tion (34) becomes

= T -1 oT\p sq -1g oF _ oT\o. 58
8V, ¥ (05 - 0770,04)B18Ry + (030,05 - ¢7)C18Ry

From equation (31) it can be shown that (39)
oz%0, = o) (o54)T
qslo'f =TI+ °2°£
so thet
8Vg, * -05'B15R; = DoR; (36)

The matrix D will be referred to as the velocity
penalty matrix,

It is difficult to assess the velocity penalty
and the errors in prediction and guidance by consid-
ering the individual terms in the matrix, and a sim-
pler criterion is needed, One possibility would be
to multiply each matrix by its transpose and compute

the eigenvalues of the resulting matrix, The square
root of the maximum eigenvalue in each case would
then represent the meximum velocity penalty, predic-
tion error, or guldance error resulting from using
the approximate matrices with a unit deviation from
the reference trajectory, Instead of this maximum
value, the error was represented by the norm of the
eppropriate matrix because of the computational sim-
plicity., Since the norm is equal to the sguare root
of the sum of the eigenvalues, the resulting infor-
mation 1s essentlally the sane,

An 1ldee of the error in prediction relative to
the total predicted error can be obtalned by express-
ing the norm of the error matrices as percentages of
the norms of the corresponding correct submatrices.
The guidance error, due to use of the approximate
matrices, 1s a function only of the initial position
deviation. Therefore, a similar percentage error in
guidance can be found from the norm of the guidance
error matrix expressed as a percentage of the norm
of the correct submetrix of partials of position
with respect to position. The velocity penalty is
also a function only of the initial position devia-
tion, so that computation of a relative velocity
correction penalty should involve only that portion
of the initial correction arising from position
deviations from the reference. The criterion used
for this comparison is the ratio of the norm of the
velocity penalty matrix to that of the matrix cpz'l(pl,
computed at the time of the initial correction.

Digital computer study.- The accuracy was
evaluated by means of a digital computer study of a
sample moon-to-earth trajectory. The computational
methods are described here briefly. The trajectory
has a flight time of about 3-1/14- days from perilune
to return perigee and lies approximately in the
moon's orbital plane. The flight time is fairly
long and therefore allows the perturbing forces not
accounted for in the two-body equations to have a
relatively large effect. For comparison purposes,
the transition matrices obtained from integrating
the differential perturbation equations from a four-
body model are taken as correct. This model includes
the second harmonic term of the earth's gravita-
tional potential as well as the vehicle, sun, earth,
and moon.

The two-body transition matrices were computed,
as described in the section on theory, both by inte-
gration and in closed form. It was found better in
this computation to take a larger sphere of influ-
ence for the moon than the generally accepted value
given by the 2/5 pover of the mass retios. The rea-
son for this can be seen if the perturbation differ-
ential equations instead of the vehicle's equations
of motion are used to compute the moon's sphere of
influence. As a result of differentiation, the term
representing the action of the central body on the
perturbing body disappears and the perturbing actions
are equal where the accelerations due to the two
bodies are equal. In the one-dimensional case, this
equality occurs when the ratio of the ranges to the
two bodies is equal to the cube root of the mass
ratios.

The integration for both the reference trajec-
tory and the perturbation equations uses a Cowell
"second-sum” method. A fourth-order Runge-Kutta
method is used to start the integration and to
change step size during the flight. The equations
given in the section on theory were used to compute
the conic approximations, and the time intervals
over which the conic approximations were used were



chosen to coincide with an integral number of
intervels from the Cowell integration.

Results and Discussion

The dete resulting from the digital computer
study will now be presented. These results will,
first, indicate why the unimproved two-body epprox-
imation is considered inadequate; second, show that
the suggested improvement is adequate; third, com-
pare the veloclty penalties resulting from the use
of improved and unimproved mastrices.

Accuracy of Unimproved Matrices

The norms of the prediction error matrices
resulting from integrsting the two-body perturba-
tion differential equations along the reference tra-
Jectory are presented in figure 1. The prediction
error matrices from equation (25) are indicated for
the appropriate curves. The prediction submatrix to
which the error matrix corresponds is also indicated
along with the units used. Note that the increase
in prediction error, with range from the earth, is
approximately exponential. The norms of the corre-
sponding submatrices of the correct transition
matrices increase in a similar fashion with increas-
ing range. For this reason, the percentage errors
in prediction exhibit a much less drastic increase.

These percentages for the data just presented
are plotted in figure 2. The curves for prediction
error matrices E; and E;, have been omitted because
they are nearly identical with those for matrices
E; and Ep, respectively. Note that even though the
error in prediction increases continually with range
from the earth, the percentage error decreases near
the moon. This decrease occurs, of course, because
the norms of the correct prediction submatrices
increase more rapidly in this region than those of
the error matrices.

For the closed-form computation of the two-body
matrices the time intervals used were sufficilently
short to give results close to those given by the
integration. A single time interval was satisfactary
for ranges less than about 330,000 km, but for the
portion of the trajectory between that range and
perilune, it was found necessary to rectify more
often. Intervals of about 0.1 day were found to
give satisfactory results and were used over the
entire trajectory.

The percentage errors in prediction for the
closed-form computation are presented in figure 3.
Comparison of these curves with those of figure 2
shows little difference in the accuracy of the two
methods of computation except in the region of gresat-
est error. The maximum percentage for E; from the
closed-form computation is about 13.5 percent as com-
pared to 12.5 percent for the integration.

The norms of the guidance error matrices for
the two methods of computation are plotted together
in figure 4. The correspondence between the two
methods is quite good at ranges beyond 200,000 km.
The pronounced differences between the two curves at
the shorter ranges occur because the earth's oblate-
ness causes larger relative differences between the
reference trajectory and the conic approximestions.
The errors for both methods are quite small in this
region and the difference between the two is not
significant when the guidance error is considered on
8 percentage basis as in figure 5.

As in the case of the prediction error, the
only noticeable difference between the percentage
errors for the two methods of computetion occurs
near the range of 350,000 km. The dats in figure 5
indicate that the two-body matrices could probably
be used successfully for guidance at ranges of less
than 250,000 km. The large errors at longer ranges
indicate the need for a correction method such as
was outlined earlier in the paper. The next data to
be presented will show the lmprovement in accuracy
resulting from use of the correction method.

Accuracy of the Improved Matrices

The same 0.1 day time intervals used for the
closed~-form computation just discussed were used to
compute the corrected matrices. It was found that
including the earth's oblateness terms in the cor-
rection computation decreases rather than improves
the accuracy unless the time Intervals are greatly
reduced near the earth. For this reason the oblate-
ness terms were omitted from this calculation, and
the resulting percentage errors in prediction are
presented in figure 6. 1In this case all the errors
are less than 0.5 percent. The irregular form of
the curves is to be expected because of the assump-
tions made in computing the corrections. These fluc-
tuations, as well as the average value, could be
reduced to the limits of computational accuracy by
reduction of the time intervals and inclusion of the
earth's oblateness.

The improvement in guidance accuracy resulting
from the use of the corrected matrices is illus-
trated in figure 7. For comparison, the norms of
the guidance error matrices from the corrected and
uncorrected closed-form computations are both pre-
sented. Except at short ranges, where oblateness is
a significant factor, the guidance error is reduced
by at least an order of magnitude at every point.
The percentage error in guidance was also calculated
using the corrected matrices and was found to reach
a maximum value of about 0.2 percent at a range of
150,000 knm.

The Velocity Penalty

The final data to be presented compare the
velocity penalties resulting from use of the improved
and unimproved matrices. For the purpose of com-
puting the velocity penalty that resulted from using
the approximate matrices, it was assumed that the
final velocity correction would be made at the short-
est range for which data have been presented so far,
about 45,000 km. It was further assumed, as dis-
cussed in the theory, that at this range the errors
in the approximate matrices are negligible. The
norms of the velocity penalty matrices computed at
the longer ranges from the closed-form transition
matrices, both corrected and uncorrected, are pre-
sented in figure 8. The additional velocity correc-
tion required is quite small in both cases for cor-
rections made at ranges of less than 200,000 km. At
longer ranges, however, the penalty for using the
uncorrected matrices rises rapidly, while that for
the corrected matrices remsins quite small.

The ratio of the norm of the velocity penalty
matrix to that associated with the initial correc-
tion is plotted in figure 9 for both cases discussed
above. Fliminstion of the errors arising from the
use of the approximate matrices at long ranges
requires a velocity penalty of as much as seven
times the initial correction. Of course, the use of
additional corrections at intermediate ranges and



the proper choice of a correction schedule, would
reduce the penalty from that shown here. On the
other hand, it seems apparent from these results
that the use of the uncorrected two-body matrices
will result in a substantial velocity penalty. The
corrected matrices result in a maximum velocity
penalty of about & percent of the iniltial correction
and this penalty also may be reduced by proper
scheduling.

Qualitative Evaluation of Computer Requirements

Finally, it is desired to consider whether the
use of the approximate method has any advantages in
terms of required computer time and storage. The
study presented here was carried out on an IBM 7090
computer and the IBM Fortran compiler. For this
reason, any precise comparison of computer storage
requirements is impractical, but some general con-
clusions can be drawn.

First, if a Cowell integration is used for the
reference trajectory, it has been found in another
Ames study that the integration of the perturbation
equaetions using a fourth-order Runge-Kutta method
requires less storage than is needed for the closed-
form computation of the two-body matrices. WNo study
has been conducted on the accuracy of this integra-
tion, but a few preliminary results indicate about
the same accuracies as in the corrected matrices
described here. This integration requires quite
short step sizes, and for this reason it consumes
about four times as much computer time as the
approximate method. The need for such short steps
indicates that it would be impractical to use this
simple Cowell integration of the perturbation equa-
tions in conjunction with an Encke integration of
the reference trajectory.

In the case of an Encke integration of the
reference trajectory, it would be necessary to com-
pute the two-body matrices so that only the addi-
tional computer capacity required to account for
the perturbing accelerations needs to be considered.
The Encke differential equations could be expanded
in a Taylor series about the reference trajectory
in order to get the perturbation differential equa-
tions. These equations could then be integrated to
give the corrections to the two-body transition
matrices. The correction scheme discussed previ-
ously represents a simplification of this procedure,
but a comparison of the computer requirements could
be arrived at only by programming the two methods.
Use of the correction method as described here will
require approximately double the storage needed for
computing only the two-body matrices.

Conclusions

The conclusions which have been drawn from the
results of the study are listed below:

1. The transition matrices computed in closed
form using conic approximations to the reference
trajectory can be used for midcourse guidance at
the expense of a substantial penalty in corrective
velocity. While this velocity penalty is large
compared with the basic midcourse requirements, it
might be acceptable in terms of the over-all
requirements of the mission.

2. The accuracy of the two-body matrices can
be improved to almost any desired level at the
expense of increased computer capacity and time.

The computetion of these corrections approximately
doubles the computer capacity required over that
needed for computing the two-body matrices only.

3. If a Cowell integration is used for the
reference trajectory, the approximate method appears
to be infericr on the basis of computer storage

requirements. The approximete method does show a
substantial savings in time.

4. Since an Encke integration of the reference
trajectory would require computation of the two-body
matrices, only the additional computer capacity
required for improving these matrices needs to be
considered. The approximate method presented for
improving the matrices is actually an approximate
method of integrating the perturbed Encke differen-
tial equations, and therefore represents some sav-
ing in computer capacity and time. Considerably
more study would be required to evaluate this
savings.
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FIGURE TITLES

Figure 1. - Errors from integration method.

Figure 2. - Percent prediction errors from integration.

Figure 3. - Percent prediction errors from closed form.

Figure 4. - Guidance errors from two-body matrices.

Figure 5. - Percent guidance errors from two-body matrices.

Figure 6. - Percent prediction errors from corrected matrices.

Figure 7. - Comparison of guidance errors.

Figure 8. - Velocity penalty.

Figure 9. - Relative size of velocity penalty.
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Figure 1. - Errors from integration method.
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Figure 2. - Percent prediction errors from integration.
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Figure 3. - Percent prediction errors from closed form.
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Figure 4. - Guidance errors from two-body matrices.
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Figure 5. - Percent guidance errors from two-body matrices.
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Figure 7. - Comparison of guidance errors.
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